2017年8月2日 · 本文针对一款 18650 锂离子电池在不同充放电过程中的电压及电流特性进行了测试,并利用集总热模型计算了电池工作过程中的发热功率,通过与相同条件下实验过程中电池表面温度变化趋势的对比,检验了集总热模型。
2018年12月16日 · 近日江苏大学的徐晓明(第一名作者,通讯作者)等人对55Ah单体电池和电池组的产热功率和温度分布情况进行了研究分析,研究表明单体电池的发热功率会随着环境温度的升高、电池SoC和充放电倍率的降低而降低,对电池组的热分析发现温度最高高的区域
2018年8月13日 · 近日江苏大学的徐晓明(第一名作者,通讯作者)等人对55Ah单体电池和电池组的产热功率和温度分布情况进行了研究分析,研究表明单体电池的发热功率会随着环境温度的升高、电池SoC和充放电倍率的降低而降低,对电池组的热分析发现温度最高高的区域集中在
本发明技术方案通过分别获取电池在电流强度作为单一变量时电池物理内阻的阻值、充放电深度作为单一变量时电池物理内阻的阻值、及环境温度作为单一变量时电池物理内阻的阻值,充分考虑到电流强度、充放电深度及环境温度对电池物理内阻的影响,将物理
2017年8月1日 · 本文针对一款18650锂离子电池在不同充放电过程中的电压及电流特性进行了测试,并利用集总热模型计算了电池工作过程中的发热功率,通过与相同条件下实验过程中电池表面温度变化趋势的对比,检验了集总热模型。 实验考察了三星ICR18650-26FM圆柱电池的充放电特性,该电池额定容量为2600mAh。 实验使用了蓝电电池充放电测试系统(型号:CT2001D)
2021年8月8日 · 本文将单体电池热模型简化为均匀发热体,减少仿真流程中的计算量,针对锂离子电池组进行热仿真分析,分析其结构的合理性,并通过实验验证其精确性。 首先利用绝热加速量热仪(accelerating rate calorimeter,ARC)采集锂离子电池的热特性参数,其次利用简化的电池单体热模型,选择风冷作为冷却方式,通过CFD(computational fluid dynamics)以
2018年8月14日 · 近日江苏大学的徐晓明(第一名作者,通讯作者)等人对55Ah单体电池和电池组的产热功率和温度分布情况进行了研究分析,研究表明单体电池的发热功率会随着环境温度的升高、电池SoC和充放电倍率的降低而降低,对电池组的热分析发现温度最高高的区域
验测试和模拟分析对额定容量为 50 A·h、 额定电压为 3 65 V 的三元锂离子动力电池的充放电发热特性进行了研究。 结果表明: Newman 公式在电池发热功率计算中精确度较高, 与试验测得发热功率相比误差为 8 7%。
2018年8月13日 · 近日江苏大学的徐晓明(第一名作者,通讯作者)等人对55Ah单体电池和电池组的产热功率和温度分布情况进行了研究分析,研究表明单体电池的发热功率
2023年10月18日 · 我们知道,电池包电芯工作时的发热量主要由 极化热 、反应热、副反应热和焦耳热四部分组成。 目前,国内外对电池包内各电池之间温度性研究偏重工程应用,目的在于确保各电池在使用过程中表面温度的 一致,研究形式主要是仿真与实验。 而电池内部 温度均匀性 的研究主要偏重机理,旨在通过研究电池的产热率、热容和 热阻 等特性,指导电芯及电池 系统热管